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Abstract. We calculate the friction force between two semi-infinite solids in relative parallel
motion (with velocityV ), and separated by a vacuum gap of widthd. The friction force results
from coupling via a fluctuating electromagnetic field, and can be considered as the dissipative
part of the van der Waals interaction. We consider the dependence of the friction force on the
temperatureT , and present a detailed discussion of the limiting cases of small and largeV andd.

1. Introduction

Because of its great practical importance and because of the development of new experimental
techniques, sliding friction has become a topic attracting increasing attention [1]. In this paper
we consider the friction force between two solids in relative motion, separated by a vacuum
gap of widthd. This ‘vacuum’ friction is in most cases of no direct practical importance since
the main contribution to the friction force when a body is slid on another body comes from the
area of real (atomic) contact [1]. Thus, the frictional stress between two semi-infinite metallic
(e.g., copper) bodies, moving parallel to each other with the relative velocityV = 1 m s−1, and
separated by the distanced = 10 Å, is only (see reference [2] and below)∼10−6 N m−2. This
stress is extremely small compared with the typical frictional stress,∼108 N m−2, occurring
in the area of atomic contact even for (boundary) lubricated surfaces. Nevertheless, vacuum
friction is important in some special cases (see reference [2]), and determines the ultimate limit
to which friction can be reduced. Quantum and thermal fluctuations of the polarization and
the magnetization of solids give rise to a fluctuating electromagnetic field. For two stationary
solids the interactions mediated by this field result in the well-known attractive van der Waals
force. For two solids in relative motion this interaction will also give rise to a friction force
between the bodies. The static aspect of the van der Waals interaction is well understood
but there are still controversial results concerning the dynamical part. Different authors have
recently studied the van der Waals friction using different approaches, and obtained results
which are in sharp contradiction to each other. The first calculation of van der Waals friction
was done by Teodorovich [3]. Schaich and Harris [4], and Pendry [5] argue that Teodorovich’s
calculation is in error. For two metallic bodies Schaich and Harris found that the friction force
is independent of any metal property, in contrast to the results of other authors. The friction
forces calculated by Levitov [6], Polevoi [7] and Mkrtchian [8] vanish in the nonretarded limit
(formally obtained when the light velocityc→∞). This result is very surprising (and in our
opinion incorrect), since neglecting retardation is a good approximation at short separationsd
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346 A I Volokitin and B N J Persson

between the surfaces, in which case one would expect the friction force to be particularly large.
Even at large separation, where the nonretarded contribution is negligible, our result differs
form those of Levitov, Polevoi and Mkrtchian. Pendry [5] considered only the case of zero
temperature, and Persson and Zhang [2] the case of small sliding velocities, and both groups
neglected retardation effects. To clarify the situation we present a straightforward calculation
of the van der Waals friction based on the general theory of the fluctuating field developed
by Rytov [9] and applied by Lifshitz [10] for studying the conservative part of the van der
Waals interaction. In this approach the interaction between the two bodies is mediated by
the fluctuating electromagnetic field which is always present in the vicinity of any collection
of atoms. Beyond the boundaries of a solid this field consists partly of travelling waves and
partly of evanescent waves which are damped exponentially with the distance away from the
surface of the body. The method that we use for calculating the interaction forces is quite
general, and is applicable to any body at arbitrary temperature. It also takes into account
retardation effects, which become important for large enough separation between the bodies.
A similar approach was used by Polevoi [7] but he obtained a nonzero friction force only
in the relativistic limit, in contrast to the present calculations and the earlier calculations of
Persson and Zhang [2], and Pendry [5]. Polevoi did not give enough details of his calculation
to compare his theory with the present calculation, but we believe that he overlooked effects
related to the change in the reflectivity of electromagnetic waves from moving bodies, which
occur even in the nonrelativistic limit. In the nonretarded limit and for zero temperature the
present calculation agree with the results of Pendry. Similarly, in the nonretarded limit and for
low sliding velocities, we agree with the study of Persson and Zhang.

Figure 1. Two semi-infinite solids having flat parallel surfaces separated by a distanced and
moving with velocityV relative to each other.

2. Calculation of the fluctuating electromagnetic field

We consider two semi-infinite solids having flat parallel surfaces separated by a distanced and
moving with velocityV relative to each other; see figure 1. We introduce the two coordinate
systemsK andK ′ with coordinate axesxyz andx ′y ′z′. In theK-system, body1 is at rest
while body2 is moving with velocityV along thex-axis (thexy- andx ′y ′-planes are in the
surface of body1, thex- andx ′-axes have the same direction, and thez- andz′-axes point
toward body2). In theK ′-system, body2 is at rest while body1 is moving with velocity−V
along thex-axis. Following Lifshitz to calculate the fluctuating field in the interior of the two
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bodies, we shall use the general theory which is due to Rytov and is described in detail in his
book [9]. This method is based on the introduction into the Maxwell equations of a ‘random’
field (just as, for example, one introduces a ‘random’ force in the theory of Brownian motion).
In theK-system in a dielectric, nonmagnetic body1 for a monochromatic field (time factor
e−iωt ) these equations are

∇×E1 = i
ω

c
B1

∇×B1 = −i
ω

c
ε1(ω)E1− i

ω

c
F1

(1)

whereE andB are the electric and magnetic fields,ε1(ω) is the complex dielectric constant
for body1, andF is the random field. According to Rytov the correlation function of the latter,
determining the average value of the product of components ofF at two different points in
space, is given by the formula〈
Fi(x, y, z)Fk(x

′, y ′, z′)
〉 = 4h̄

(
1

2
+ n(ω)

)
ε′′(ω)δikδ(x − x ′)δ(y − y ′)δ(z− z′) (2)

where

n(ω) = 1

ēhω/kBT − 1
and whereT is the temperature andε′′ is the imaginary part ofε = ε′ + ε′′. The function
F (x, y, z) can be represented in the form of a Fourier integral, which can be written for the
half-spacez < 0 in the form

F (x, y, z) =
∫ +∞

−∞
g(k)eiq·r coskzz d3k (3)

where a two-dimensional vectorq is parallel to the surface,k2 = kz + q2, and r is the
radius vector in thexy-plane. For the Fourier componentsg(k), the correlation function
corresponding to the spatial correlation (3) is〈

gi(k, ω)g
∗
k (k
′, ω)

〉 = h̄( 1
2 + n(ω))ε′′(ω)

π3
δikδ(k − k′). (4)

For body1 (z < 0) the fieldsE andB can be written in the form [10]

E1 =
∫ +∞

−∞
{a1(k) coskzz + ib1(k) sinkzz} eiq·r d3k +

∫ +∞

−∞
u1(q)e

iq·r−is1z d2q (5)

B1 = c

ω

∫ +∞

−∞
{([q × a1] + kz[ez × b1]) coskzz + i([q × b1] + kz[ez × a1]) sinkzz} eiq·r d3k

+
c

ω

∫ +∞

−∞
{[q × u1] − s1[ez × u1]} eiq·r−is1z d2q (6)

whereez is a unit vector in the direction of thez-axis, and

s1 =
√
ω2

c2
ε1− q2 (7)

where the sign of the root is to be chosen such that the imaginary part ofs will be positive.
The first terms in the expressions (5) and (6) represent a solution of the inhomogeneous

equations (1). Substituting them in the second equation of (1) and writingF in the form (3),
one can find the following relations, expressinga1 andb1 in terms of the Fourier components
g1 of the random field:

a1 = 1

ε1(k2 − ω2ε1/c2)

[
ω2

c2
ε1g1− q(q · g1)− k2

z g1zez

]
(8)

b1 = − kz

ε1(k2 − ω2ε1/c2)

[
ez(q · g1) + qg1z

]
. (9)
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The second integrals in equations (5), (6) represent the solution of the homogeneous
equations (1) (i.e. the equations withF omitted), and describe the plane-wave field reflected
from the boundary of body. The condition for transversality of these waves is

u1 · q − s1u1z = 0. (10)

In the space between bodies (vacuum),ε = 1,F = 0 and the field in theK-system is
given by the general solution of the homogeneous equations, which can be written in the form

E3 =
∫ +∞

−∞

{
v(q, ω)eipz +w(q, ω)e−ipz

}
eiq·r d2q (11)

B3 = c

ω

∫ +∞

−∞

{
([q × v] + p[ez × v])eipz + ([q ×w] − p[ez ×w])e−ipz

}
eiq·r d2q (12)

where

p =
√
ω2

c2
− q2 (13)

andv andw satisfy the transversality conditions

v · q + pvz = 0 w · q − pwz = 0. (14)

The boundary conditions on the surfaces of the media are the requirement of continuity
of the tangential components ofE andB in the rest frame of the respective body. In the
K-system, on the planez = 0 for a given value ofq it is convenient to write the corresponding
equations for components of the fields along the vectorseq = q/q anden = [ez × eq]; this
gives the following equations:∫ +∞

−∞
a1q dkz + u1q = vq +wq∫ +∞

−∞
a1n dkz + u1n = vn +wn∫ +∞

−∞
(qa1z − kzb1q) dkz + qu1z + s1u1q = q(vz +wz)− p(vq − wq)∫ +∞

−∞
−kzb1n dkz + s1u1n = −p(vn − wn)

(15)

wherea1q = eq · a1, a1n = en · a1 and so on. In what follow we shall need only the field
between two media. Using the transversality conditions (10) and (14) and the expressions (8)
and (9), from equations (15) we can obtain the following equations:

ps1

∫ ∞
−∞
(qg1z(q, kz, ω)− s1g1q(q, kz, ω))

1

k2
z − s2

1

dkz

= − (s1 + pε1)vq(q, ω)− (pε1− s1)wq(q, ω) (16)

s1

(
ω

c

)2 ∫ ∞
−∞

g1n(q, kz, ω)

k2
z − s2

1

dkz = (p + s1)vn(q, ω) + (s1− p)wn(q, ω). (17)

In the K ′-system the Maxwell equations have the same form (1) and in the second
medium (the half-spacez > d), the fieldE′2,B

′
2 is given by the same formulae (5)–(9)

with the x-coordinate changed tox ′, the index 1 changed to 2, coskzz, sinkzz replaced by
coskz(z− d), sinkz(z− d) and a change in the sign ofs (the ‘reflected’ waves now propagate
along the positivez-direction). In the space between the media in theK ′-system, the field is
given by the same formulae, equations (11)–(13), withx changed tox ′, andv,w replaced by
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v′,w′. The relations between the fields in theK- andK ′-systems are determined by Lorentz
transformation. Neglecting the terms of order(V/c)2, these relations are given by

v′(q′, ω′) = v(q, ω) +
V

ω
[ex [k × v(q, ω)]] (18)

w′(q′, ω′) = w(q, ω) +
V

ω

[
ex
[̃
k ×w(q, ω)]] (19)

wherek = (q, p), k̃ = (q,−p), ω′ = ω − qxV, q′ = q − (V ω/c2)ex .
In theK ′-system the boundary conditions at the surface of body2 at z = d give the

equations

ps−2

∫ ∞
−∞
(q ′g2z(q

′, kz, ω′) + s−2 q2q′(q
′, kz, ω′))

1

k2
z − s−2

2

dkz

= (pε−2 − s−2 )v′q′(q′, ω′)eipd + (s−2 + pε−2 )w
′
q′(q

′, ω′)e−ipd (20)

s−2

(
ω′

c

)2 ∫ ∞
−∞

g2n′(q
′, kz, ω′)

k2
z − s−2

2

dkz = (s−2 − p)v′n′(q′, ω′)eipd + (s−2 + p)w′n′(q
′, ω′)e−ipd

(21)

whereε−2 = ε2(ω − qxV ), and

s−2 =
√
(ω′/c)2ε2(ω′)− q ′2 =

√
(ω − qxV )2

c2
(ε2(ω − qxV )− 1) + p2. (22)

p is invariant under Lorentz transformation. Now from the equations (18), (19) with accuracy
to the terms of the first order inV/c we have

v′q′(q
′, ω′) = (v′ · eq′) ≈ vq(q, ω) +

qyp
2V

ωq2
vn(q, ω) (23)

v′n′ = (v′ · en′) ≈
ω′

ω
vn − ωqyV

c2q2
vq. (24)

Similar equations can be written forw′q′ , w
′
n′ . After substituting (23) and (24) into the equations

(16), (17) and (20), (21) we get a system of four equations. These equations can be solved
considering the second terms in the equations (23), (24) as a small perturbation. In zero order
we neglect the second terms. The zero-order solution has the form

v0
q =

∫ ∞
−∞

p

1

{
s1e−ipl(s−2 + ε−2 p)

qg1z(q, kz, ω)− s1g1q(q, kz, ω)

k2
z − s2

1

+ s−2 (ε1p − s1)q
′g2z(q

′, kz, ω′) + s−2 g2q′(q
′, kz, ω′)

k2
z − s−2

2

}
dkz (25)

w0
q =

∫ ∞
−∞

p

1

{
−s1eipd(ε−2 p − s−2 )

qg1z(q, kz, ω)− s1g1q(q, kz, ω)

k2
z − s2

1

− s−2 (ε1p + s1)
q ′g2z(q

′, kz, ω′) + s−2 g2q′(q
′, kz, ω′)

k2
z − s−2

2

}
dkz (26)

v0
n =

∫ ∞
−∞

ω

c21′

{
−ωs1e−ipd(s−2 + p)

g1n(q, kz, ω)

k2
z − s2

1

+ ω′s−2 (s1− p)
g2n′(q

′, kz, ω′)
k2
z − s−2

2

}
dkz

(27)
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w0
n =

∫ ∞
−∞

ω

c21′

{
ωs1eipd(s−2 − p)

g1n(q, kz, ω)

k2
z − s2

1

− ω′s−2 (s1 + p)
g2n′(q

′, kz, ω′)
k2
z − s−2

2

}
dkz

(28)

vz = −qvq
p

wz = qwq

p
(29)

where we have introduced the notation

1 = eipd(ε1p − s1)(ε−2 p − s−2 )− e−ipd(ε1p + s1)(ε
−
2 p + s−2 )

1′ = eipd(s1− p)(s−2 − p)− e−ipd(p + s1)(p + s−2 ).

The first-order solution has the form

v1
q =

(pε1− s1)3
1

w1
q = −

(pε1 + s1)3

1
(30)

v1
n =

(s1− p)3′
1′

w1
n = −

(p + s1)3′

1′
(31)

where

3 = −qyp
2V

ωq2

[
(pε−2 − s−2 )v0

neipd + (pε−2 + s−2 )w
0
ne−ipd

]
3′ = ω′qyV

c2q

[
(s−2 − p)v0

qe
ipd + (s−2 + p)w0

qe
−ipd

]
.

3. Calculation of the force of friction

The frictional stressesσ and−σ which act on the surfaces of the two bodies can be obtained
from thexz-component of the Maxwell stress tensorσij , evaluated atz = 0:

σ = 1

8π

∫ +∞

−∞
dω [〈E3zE

∗
3x + 〈E∗3zE3x〉 + 〈B3zB

∗
3x〉 + 〈B∗3zB3x〉]z=0. (32)

Here the〈· · ·〉 denote statistical averaging over the random field. The averaging is carried out
with the aid of equation (4). Note that the components of the random fieldg1 andg2 referring
to different media are statistically independent, so the average of their product is zero. Writing
the squares of the integrals (11), (12) in the usual way as double integrals, and carrying out
one integration over theδ-function, we obtain

σ = 1

8π

∫
dω d2q [〈E3z(q, ω)E

∗
3x(q, ω)〉 + 〈E∗3zq, ω)E3x(q, ω)〉

+ 〈B3z(q, ω)B
∗
3x(q, ω) + 〈B∗3z(q, ω)B3x(q, ω)〉]z=0 (33)

where one must substitute, in place ofE3 andB3, the expressions in the integrands (11),
(12) determined by the formulae (25)–(31), and the average product〈gi(k, ω)g∗k (k, ω)〉 is to
be taken as(1/2 + n(ω))ε′′(ω)δik/π3. For a given value ofq it is convenient to express the
componentsEx andBx in terms of the components along the two vectorseq anden:

Ex = (qx/q)Eq − (qy/q)En
Bx = (qx/q)Bq − (qy/q)Bn.
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Thus we can write

σ = 1

8π

∫
dω d2q

{
qx

q
[〈Ez(q, ω)E∗q(q, ω)〉 + 〈E∗z q, ω)Eq(q, ω)〉

+ 〈Bz(q, ω)B∗q (q, ω)〉 + 〈B∗z (q, ω)Bq(q, ω)〉]z=0

− qy
q

[〈Ez(q, ω)E∗n(q, ω)〉 + 〈E∗z q, ω)En(q, ω)〉

+ 〈Bz(q, ω)B∗n(q, ω)〉 + 〈B∗z (q, ω)Bn(q, ω)〉]z=0

}
. (34)

According to equations (11), (12)

Ez = (vz +wz) = (q/p)(wq − vq) = (qp∗/|p|2)(wq − vq)
Eq = vq +wq
En = vn +wn
Bz = (cq/ω)(vn +wn)

Bq = (cp/ω)(wn − vn)
Bn = (ωp∗/c|p|2)(vq − wq).

(35)

After substituting these expressions into formula (34) one can see that the second term
is identically equal to zero. From equations (25)–(31) it follows that the zero- and first-order
solutions are statistically independent; then, neglecting the terms of order(v/c)2, from (34),
(35) we obtain

σ = 1

4π

∫ +∞

0
dω
∫

d2q qx

([
1

|p|2 (p + p∗)(〈|w0
q|2〉 − 〈|v0

q|2〉)

+ (p − p∗)〈(v0
qw

0∗
q − v0∗

q w
0
q)〉
]

+

(
c

ω

)2[
(p + p∗)(〈|w0

n|2〉 − 〈|v0
n|2〉)− (p − p∗)〈(v0

nw
0∗
n − v0∗

n w
0
n)〉
])

(36)

where we change the integration overω between the limits−∞ and +∞ to integration only
over positive values ofω, which gives the extra factor two.

Taking into account thatp = p∗ for q < ω/c andp = −p∗ for q > ω/c, and carrying
out the integration over dkz with the help of the formula∫ ∞

−∞

dkz
|k2
z − s2|2 =

iπ

|s|2 (s − s∗)
we obtain, after substituting (25)–(31) into (36),

σ = h̄

8π3

∫ ∞
0

dω
∫
q<ω/c

d2q qx

×
{
(1− |R1p|2)(1− |R−2p|2)
|1− e2ipdR1pR

−
2p|2

(n(ω − qxV )− n(ω)) + [Rp → Rs ]

}

+
h̄

2π3

∫ ∞
0

dω
∫
q>ω/c

d2q qxe
−2|p|d

×
{

ImR1p ImR−2p
|1− e−2|p|dR1pR

−
2p|2

(n(ω − qxV )− n(ω)) + [Rp → Rs ]

}
(37)
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where

Rip = εip − si
εip + si

Ris = εi − si
εi + si

R±ip =
ε±i p − s±i
ε±i p + s±i

R±is =
ε±i − si
ε±i + si

.

ε±i (ω) = εi(ω ± qxV ) and s±i (ω) = si(ω ± qxV ), i = 1, 2. Note thatRip and Ris
are the electromagnetic reflection factors for p-polarized and s-polarized light, respectively.
(p-polarized light has the electric field vector in the plane of incidence while the electric
field vector is perpendicular to this plane for s-polarized light.) The first term in (37) is the
contribution to the friction force from the propagating (radiating) electromagnetic field, i.e.,
the black-body radiation. This term includes only the thermal radiation and is equal to zero at
T = 0. The second term is derived from the evanescent field, i.e., from the component of the
electromagnetic field which decays exponentially with the distance away from the surfaces of
the bodies. This term does not vanish even atT = 0 K because of quantum fluctuations in the
charge density in the solids.

4. Some limiting cases

Let us first consider distancesd � c/ωp, whereωp is the plasma frequency of the metals. For
typical metals,c/ωp ≈ 200 Å. In this case the main contribution comes fromq � ωp/c, and
we haves1 ≈ s2 ≈ p ≈ iq, Rs ≈ 0 and

Rp ≈ ε − 1

ε + 1
.

In this approximation the integration overq can be extended to the wholeq-plane. Using these
approximations, the second term in (11) can be written as

σ = h̄

4π3

∫ ∞
0

dω
∫

d2q qxe
−2|p|d

{(
ImR1p ImR−2p

|1− e−2|p|dR1pR
−
2p|2

+ (1↔ 2)

)
× (n(ω − qxV )− n(ω)) + [Rp → Rs ]

}
= h̄

2π3

∫ ∞
−∞

dqy

∫ ∞
0

dqx qxe
−2qd

{∫ ∞
0

dω [n(ω)− n(ω + qxv)]

×
(

ImR+
1p ImR2p

|1− e−2|p|dR+
1pR2p|2 + (1↔ 2)

)

−
∫ qxv

0
dω [n(ω) + 1/2]

(
ImR−1p ImR2p

|1− e−2qdR−1pR2p|2
+ (1↔ 2)

)}
(38)

where we have used the relationn(−ω) = −n(ω)−1. At zero temperature the Bose–Einstein
factorn(ω) = 0, and only the second term in (38) will contribute to the sliding friction; in
this limit our expression for the friction force for two identical solids is in agreement with
that of Pendry. In appendix A we show that the zero-temperature result can be generalized to
include nonlocal optics effects, by replacing the reflection factorRp(ω) in (38) by the surface
response functiong(q, ω). Next, let us consider the limiting case of low sliding velocity or
high temperature, namely,V � cd/dW , wheredW = ch̄/kBT is the Wien length (typically
dW ≈ 105 Å). In this case

n(ω)− n(ω + qxV ) ≈ −qxV dn

dω
= ēhω/kBT

(ēhω/kBT − 1)2
h̄qxV

kBT
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and in the second term in (38) we can put

n(ω) ≈ kBT /h̄ω.
Substituting these results in (38) gives

σ = h̄V

2π2

∫ ∞
0

dq q3e−2qd
∫ ∞

0
dω

(
− dn

dω

)
ImR1p ImR2p

|1− e−2qdR1pR2p|2

+
2

π3
kBT

∫ ∞
−∞

dqy

∫ ∞
0

dqx qxe
−2qd

∫ qxV

0

dω

ω

ImR1p ImR2p

|1− e−2qdR1pR2p|2 . (39)

The second term in this expression is proportional toV 2 asV → 0 (see below) and can
be neglected in the limit of smallV . The first term is∼V and is in agreement with the
result obtained by Persson and Zhang if one assumes local optics (which implies making the
replacementg(q, ω)→ Rp(ω) in [2]). For free-electron-like metals the local optics is accurate
if d � l, wherel is the electron mean free path in the metal. If this condition is not satisfied,
the general formula of Persson and Zhang must be used.

Let us consider two identical metals described by the dielectric function

ε(ω) = 1− ω2
p

ω(ω + i/τ)
(40)

whereτ is the relaxation time andωp the plasma frequency. Thus, for small frequencies

ImRp ≈ 2ω

ω2
pτ

ReRp ≈ 1

and if we neglect the imaginary part ofRp in the denominator of the integrand in (13) we
obtain

σ = ξ
(
kBT

h̄ωp

)2 1

(ωpτ)2

h̄V

d4
+

2π

45

kBT

h̄ωp

1

(ωpτ)2

h̄V 2

ωpd5
(41)

where

ξ = 1

8

∫ ∞
0

dx x2

ex − 1
≈ 0.5986.

In deriving (41) we have used the following standard integrals:∫ ∞
0

dx x

ex − 1
= π2

6

∫ ∞
0

dx x3

ex − 1
= π4

15
.

The ratio between the second and first term in (41) equals≈(V/c)(dW/d), and in deriving (41)
we have assumed that this quantity is much smaller than unity. As an example, ifd = 10 Å
andV = 1 m s−1 then for typical metals at room temperature (kBT ≈ 0.025 eV,ωpτ ≈ 100,
h̄ωp ≈ 10 eV) the first and the second terms in (41) giveσ ≈ 10−8 and≈10−13 N m−2,
respectively.

On the other hand, if(V/c)(dW/d)� 1 we get

σ = ξ

2

(
kBT

h̄ωp

)2 1

(ωpτ)2

h̄V

d4
+ ζ

1

(ωpτ)2

h̄V

d4

(
V

dωp

)2

(42)

where

ζ = 5

29π2

∫ ∞
0

dx x4

ex − 1
= 0.024 610.

The ratio of the second and first terms in (42) equals∼0.1(V/c)2(dW/d)2. It is clear that at
low temperature or high velocities, the second term in (42) will dominate.
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Next, let us consider the sliding friction to linear order in the sliding velocity when
c/ωp � d � dW . There will be two contributions associated withRp andRs . As shown in
appendix B, the contribution fromRp is

σp ≈ 3ξ

π2

h̄V

d4

(
d

dW

)2
kBT

h̄ωp

1

ωpτ

(
1 +

1

e
+ ln

dW

d

)
. (43)

The contributionσs from the term involvingRs is given by (see appendix B)

σs ≈ Cωpτ V
c

h̄ωp

d2dW
(44)

whereC ≈ 0.394. Comparing (43) with (44) we obtain

σs/σp ≈ (ωpτ)2(h̄ωp/kBT )2.
For typical metals at room temperature, ¯hωp/kBT ∼ 103 andωpτ ∼ 100, soσs/σp ∼ 1010,
i.e., the main contribution comes from the term involvingRs . As an illustration, ifd = 104 Å
andV = 1 m s−1 then for metals at room temperature, characterized by the same parameter
values as were used above, one getσs ≈ 10−8 N m−2.

Now, let us consider the radiative contribution to the friction force, which is given by the
first term in (38). In linear order in the sliding velocity we get

σrad = h̄V

8π3

∫ ∞
0

dω
∫
q<ω/c

d2q q2
x

{
(1− |R1p|2)(1− |R2p|2)
|1− e2ipdR1pR2p|2

(
−∂n(ω)

∂ω

)
+ [Rp → Rs ]

}
.

(45)

For separationsd much smaller than the Wien wavelengthdW = ch̄/kBT we can put
exp(ipd) ≈ 1. In this case and for the small frequencies, whenω 6 kBT /h̄ � 1/τ , we
get for identical metals described by the dielectric function (40)

(1− |Rp|2)2
|1− R2

p|2
= 1

2
+
(ε∗s)2 + (εs∗)2

4|εs|2 ≈ 1

2
+
ε∗ + ε

4|ε| ≈
1

2

(
1 +

ωτ

2

)
≈ 1

2
(46)

and the same result is obtained whenRp in (46) is replaced byRs . The final result for the
radiative friction force has the form

σrad = h̄V

8π2c4

∫ ∞
0

dω ω3n(ω) = π2

120
h̄V

(
kBT

h̄c

)4

. (47)

Note that the radiative stress does not depend on the separation and is proportional toT 4. The
latter result is, of course, only valid as long asd is small compared with the lateral extent
(or linear size)L of the bodies. Whend becomes comparable with or larger thanL, the
friction force between the two bodies will decrease monotonically with increasingd. At room
temperature and at the sliding velocityV = 1 m s−1 one getsσrad ≈ 10−15 N m−2. The ratio
of this contribution toσs from (44) is

σrad

σs
= 0.1

(
d

dW

)2
kBT

h̄ωp

1

ωpτ
∼ 10−6

(
d

dW

)2

.

Thus for d ∼ dW (which is of order∼105 for typical metals at room temperature) the
nonradiative part dominates over the radiative contribution by a factor∼106. However, for
large enough distances the radiative part dominates as this contribution is finite for arbitrary
separationsd.
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5. Summary and conclusions

We have calculated the friction force between two arbitrary bodies with flat surfaces separated
by a vacuum slab of thicknessd, and moving with a relative velocityV . The separationd is
assumed to be so large that the only interaction between the bodies is via the electromagnetic
field associated withthermalor quantumfluctuations in the solids. A general formula for
the friction force has been obtained, which is valid for arbitrary velocityV , separationd
and temperatureT , and applicable to any bodies. At low sliding velocity only thermal
fluctuations give a contribution to the friction force, linearly proportional to the velocityV .
Quantum fluctuations give a nonlinear (inV ) contribution to the friction force which is usually
negligible compared with the thermal contribution. (There is also a contribution from quantum
fluctuations which is proportional toV , resulting from electron–photon processes of higher
order than those considered in our work. However, this contribution decays as exp(−2Gd)
(whereG = 2π/a is the smallest reciprocal-lattice vector) and is negligibly small already
for d = 10 Å; see [2, 11].) We have studied the detailed distance dependence of the friction
force from short distances, where retardation effects can be neglected, to large distances where
retardation effects and black-body radiation are important. In most practical cases, involving
sliding of a block on a substrate, the van der Waals friction makes a negligible contribution to
the friction force (the main part of the friction arises from the regions of real contact between
the solids). However, in some special cases the van der Waals friction is very important [2]. For
example, quantum fluctuations contribute in an important manner to the friction force acting
on thin physisorbed layers of atoms sliding on metallic surfaces [12]. (In this case there is
an overlap of the wavefunctions of the sliding layer and those of the metal, which results in a
second contribution to the friction force, derived from the repulsive ‘contact interaction’ (Pauli
repulsion) between the sliding layer and the substrate.) In addition, the contribution from
thermal fluctuations gives the dominating drag force in some experiments involving parallel
2D electron systems [13].
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Appendix A

In this appendix we derive an expression for the (nonlinear) sliding friction using a nonlocal
optics description of the metals. For simplicity, we focus on zero temperature,T = 0 K,
and assume thatd is so short that retardation effects can be neglected (only in this ‘short-
distance’ regime will nonlocal effects be important). The calculation is based on the formalism
developed in [2, 14]. Let us first define the linear response functiong(q, ω) which is needed
below. Assume that a semi-infinite metal occupies the half-spacez 6 0. A charge distribution
in the half-spacez > d gives rise to an (external) potential which must satisfy the Laplace
equation forz < d and which therefore can be written as a sum of evanescent plane waves of
the form

φext = φ0eqzeiq·x−iωt
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whereq = (qx, qy) is a 2D wavevector. This potential will induce a charge distribution in the
solid (occupyingz < 0) which in turn gives rise to an electric potential which must satisfy the
Laplace equation forz > 0, and which therefore can be expanded into evanescent plane waves
which decay with increasingz > 0. Thus the total potential for 0< z < d can be expanded
in functions of the form

φext = φ0(e
qz − ge−qz)eiq·x−iωt

where the reflection factorg = g(q, ω). For the present purposes, we can treat the low-
energy electron–hole pair excitations in the metals as bosons. As shown in reference [14], the
Hamiltonian for the total system can be written as

H =
∑
qα1

h̄ωqα1b
+
qα1
bqα1 +

∑
qα2

h̄ωqα2b
+
qα2
bqα2 + h̄ωb+b

+
∑
qα1n

Cqα1e
−qzn(bqα1e

iq·(xn+V t) + h.c.). (A1)

Hereωqα1, b
+
qα1

andbqα1 are the angular frequency and creation and annihilation operators for
the bosons (of solid1) with the quantum numbers(q, α1), andCqα1 are parameters determining
the coupling between the boson excitations in solid1 with the electrons in solid2. Similarly,
b+
qα2

andbqα2 are creation and annihilation operators for bosons in solid2, and(xn, zn) is the
position operator of electronn in solid2, which in principle could be expressed in terms of the
operatorsb+

qα2
andbqα2, but for the present purpose this is not necessary. As shown in [14],

Cqα1 can be related to Img1(q, ω) via∑
α1

|Cqα1|2δ(ω − ωqα1) =
2e2h̄

Aq
Im g1(q, ω). (A2)

We can write the Hamiltonian of the interaction between solids1 and2 as

H ′ =
∑
q

(V̂qe
iq·V t + h.c.).

Using time-dependent perturbation theory (withH ′ as the perturbation) we can calculate the
energy transfer from the translational motion (kinetic energy) to internal excitations in the
solids (boson excitationsωqα1 andωqα2 in solids1 and2, respectively):

P = 2π

h̄2

∑
qα1α2

h̄ωqδ(ωq − ωqα2 − ωqα1)|Cqα1|2

× e−2qd

∣∣∣∣〈nqα1 = 1, nqα2 = 1|
∑
n

e−q(zn−d)e−iq·xnb+
qα1
|0, 0〉

∣∣∣∣2 (A3)

whereωq = |q · V |. To simplify (A3), let us write

δ(ωq − ωqα1 − ωqα2) =
∫

dω′ δ(ω′ − ωqα1)δ(ωq − ω′ − ωqα2). (A4)

Substituting (A4) in (A3) and using (A2) gives

P = 4πe2

A

∑
q

ωq

q
e−2qd

∫
dω′ Im g1(q, ω

′)Mq(ωq − ω′) (A5)

where

Mq(ω) =
∑
α2

δ(ω − ωqα2)

∣∣∣∣〈nqα2 = 1|
∑
n

e−q(zn−d)e−iq·xn |0〉
∣∣∣∣2.
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But it has been shown elsewhere that [15]

Ah̄q

2π2e2
Im g2(q, ω) =

∑
α2

δ(ω − ωqα2)

∣∣∣∣〈nqα2 = 1|
∑
n

e−q(zn−d)e−iq·xn |0〉
∣∣∣∣2

so we have that

Mq(ω) = Ah̄q

2π2e2
Im g2(q, ω). (A6)

Substituting this result in (A5) gives

P = 2h̄

π

∑
q

ωqe
−2qd

∫
dω′ Im g1(q, ω

′) Im g2(q, ωq − ω′). (A7)

Finally, making the replacement∑
q

→ A

4π2

∫
d2q

and using the relationP = σAV between the powerP and the shear stressσ gives

σ = h̄

2π3

∫
d2q |qx |e−2qd

∫ |qx |V
0

dω′ Im g1(q, ω
′)′ Im g2(q, |qx |V − ω′) (A8)

where we have used that Img(q, ω) = 0 forω < 0. The couplingH ′ gives rise not only to real
excitations but also to screening (image charge effects). To take these into account one must
go to higher order in perturbation theory. Following reference [2] this gives a modification of
(A8):

σ = h̄

2π3

∫
d2q

|qx |e−2qd

|1− g1(q, 0)g2(q, 0)e−2qd |2
∫ |qx |V

0
dω′ Im g1(q, ω

′) Im g2(q, |qx |V − ω′)
(A9)

where we have assumed that the small frequencies involved in the real excitations are screened
in an adiabatic manner so thatg1 andg2 can be evaluated at zero frequency in the screening
factor. In the case of local optics, this expression forσ agrees with the last term in (38)
evaluated at zero temperature. At finite temperature (T > 0 K) an extra factor of [1 + 2n(ω′)]
must be inserted in the frequency integral in (A9) to take into account the enhanced probability
for excitation of bosons at finite temperature. ForT > 0 K one must, in addition to the
process considered above, also include scattering processes where a thermally excited boson
is annihilated either in solid1 or in solid 2, namely(nqα1 = 0, nqα2 = 1) → (1, 0) and
(1, 0)→ (0, 1). These processes were considered in reference [2] and give, in the local optics
case, the frictional stress corresponding to the first term in (38).

Appendix B

In this appendix we calculate the sliding friction to linear order in the sliding velocity when
c/ωp � d � dW (wheredW = ch̄/kBT ). In this case the main contributionσ comes from
the first term in (39) to which we must add a similar term involvingRs . In this integral we
replace the integration variableq with p̄ = 2dq. The integral over̄p is divided into two parts:
the integral over(0, p̄0) and that over(p̄0,∞), wherep0 ∼ dkBT /ch̄ � 1. In the integral
over(p̄0,∞) and forω > ω0, where

ω0 ∼
(

c

ωpd

)2 1

τ
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we can put

ImRp ≈ 2

p̄

(
2ωd

c

)(
ω

2ω2
pτ

)1/2

(B1)

ImRs ≈ − 2p̄c

ωpd

(
1

ωτ

)1/2

. (B2)

Let us first consider the contributionσp to (39) from terms involvingRp. We then obtain

σp = h̄v

π2

(
1

2d

)4 ∫ ∞
p̄0

dp̄ p̄
d

dp̄

(
− 1

ep̄ − 1

)∫ ∞
0

dω
ω

2ω2
pτ

(
2ωd

c

)2(
− dn

dω

)
≈ 3

8π2

h̄v

d4

(
1 +

∫ 1

p̄0

dp̄
1

ep̄ − 1
+
∫ ∞

1
dp̄ e−p̄

)
×
(
kBT d

h̄c

)2
kBT

h̄ωp

1

ωpτ

∫ ∞
0

dx x2

ex − 1

≈ 3ξ

π2

h̄v

d4

(
kBT d

h̄c

)2
kBT

h̄ωp

1

ωpτ

(
1 +

1

e
+ ln

dw

d

)
(B3)

whereξ = 0.5986 (see section 3). The integral over 0< p̄ < p̄0 can be shown to give a
negligible contribution to the linear (in the sliding velocity) friction force. This follows from
the following equation:

d

dω

(ImRp)
2

|1− e−p̄RpRp|2 ≈
d

dω

(ImRp)
2

|1− RpRp|2 =
d

dω

(
(Im(s/ε))2

|s/ε|2
)
≈ 0

where we have used that Im(s/ε)/|s/ε| is approximately independent of frequency. Next, let
us consider the contributionσs to (39) from the term involvingRs . We get

σs ≈ 5

16π2

h̄v

d4

h̄

kBT τ

(
c

ωpd

)2 ∫ ∞
0

dp̄ p̄4

ep̄ − 1

∫ ∞
x0

dx

x

d

dω

(
− 1

ex − 1

)
= C h̄v

d4

(
kBT τ

h̄

)(
ωpd

c

)2

where

C = 5

32π2

∫ ∞
0

dp̄ p̄4

ep̄ − 1
= 0.394

x0 = h̄ω0

kBT
≈ h̄

kBT τ

(
c

ωpd

)2

� 1.
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