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Abstract. We calculate the friction force between two semi-infinite solids in relative parallel
motion (with velocity V), and separated by a vacuum gap of widthThe friction force results

from coupling via a fluctuating electromagnetic field, and can be considered as the dissipative
part of the van der Waals interaction. We consider the dependence of the friction force on the
temperaturd’, and present a detailed discussion of the limiting cases of small andWaageld.

1. Introduction

Because of its great practical importance and because of the development of new experimental
techniques, sliding friction has become a topic attracting increasing attention [1]. In this paper
we consider the friction force between two solids in relative motion, separated by a vacuum
gap of widthd. This ‘vacuum’ friction is in most cases of no direct practical importance since
the main contribution to the friction force when a body is slid on another body comes from the
area of real (atomic) contact [1]. Thus, the frictional stress between two semi-infinite metallic
(e.g., copper) bodies, moving parallel to each other with the relative veldcityl m s, and
separated by the distande= 10 A, is only (see reference [2] and below)0¢ N m~2. This

stress is extremely small compared with the typical frictional stre468 N m~2, occurring

in the area of atomic contact even for (boundary) lubricated surfaces. Nevertheless, vacuum
friction is importantin some special cases (see reference [2]), and determines the ultimate limit
to which friction can be reduced. Quantum and thermal fluctuations of the polarization and
the magnetization of solids give rise to a fluctuating electromagnetic field. For two stationary
solids the interactions mediated by this field result in the well-known attractive van der Waals
force. For two solids in relative motion this interaction will also give rise to a friction force
between the bodies. The static aspect of the van der Waals interaction is well understood
but there are still controversial results concerning the dynamical part. Different authors have
recently studied the van der Waals friction using different approaches, and obtained results
which are in sharp contradiction to each other. The first calculation of van der Waals friction
was done by Teodorovich [3]. Schaich and Harris [4], and Pendry [5] argue that Teodorovich’s
calculation is in error. For two metallic bodies Schaich and Harris found that the friction force
is independent of any metal property, in contrast to the results of other authors. The friction
forces calculated by Levitov [6], Polevoi [7] and Mkrtchian [8] vanish in the nonretarded limit
(formally obtained when the light velocity— o). This result is very surprising (and in our
opinion incorrect), since neglecting retardation is a good approximation at short sepatations
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between the surfaces, in which case one would expect the friction force to be particularly large.
Even at large separation, where the nonretarded contribution is negligible, our result differs
form those of Levitov, Polevoi and Mkrtchian. Pendry [5] considered only the case of zero
temperature, and Persson and Zhang [2] the case of small sliding velocities, and both groups
neglected retardation effects. To clarify the situation we present a straightforward calculation
of the van der Waals friction based on the general theory of the fluctuating field developed
by Rytov [9] and applied by Lifshitz [10] for studying the conservative part of the van der
Waals interaction. In this approach the interaction between the two bodies is mediated by
the fluctuating electromagnetic field which is always present in the vicinity of any collection
of atoms. Beyond the boundaries of a solid this field consists partly of travelling waves and
partly of evanescent waves which are damped exponentially with the distance away from the
surface of the body. The method that we use for calculating the interaction forces is quite
general, and is applicable to any body at arbitrary temperature. It also takes into account
retardation effects, which become important for large enough separation between the bodies.
A similar approach was used by Polevoi [7] but he obtained a nonzero friction force only
in the relativistic limit, in contrast to the present calculations and the earlier calculations of
Persson and Zhang [2], and Pendry [5]. Polevoi did not give enough details of his calculation
to compare his theory with the present calculation, but we believe that he overlooked effects
related to the change in the reflectivity of electromagnetic waves from moving bodies, which
occur even in the nonrelativistic limit. In the nonretarded limit and for zero temperature the
present calculation agree with the results of Pendry. Similarly, in the nonretarded limit and for
low sliding velocities, we agree with the study of Persson and Zhang.
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Figure 1. Two semi-infinite solids having flat parallel surfaces separated by a distaacel
moving with velocityV relative to each other.

2. Calculation of the fluctuating electromagnetic field

We consider two semi-infinite solids having flat parallel surfaces separated by a distamte
moving with velocityV relative to each other; see figure 1. We introduce the two coordinate
systemsK and K’ with coordinate axesyz andx’y’z’. In the K-system, bodyl is at rest
while body?2 is moving with velocityV along thex-axis (thexy- andx’y’-planes are in the
surface of bodyl, thex- andx’-axes have the same direction, and thendz’-axes point
toward body2). In the K’-system, body is at rest while body is moving with velocity—V
along thex-axis. Following Lifshitz to calculate the fluctuating field in the interior of the two
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bodies, we shall use the general theory which is due to Rytov and is described in detail in his
book [9]. This method is based on the introduction into the Maxwell equations of a ‘random’
field (just as, for example, one introduces a ‘random’ force in the theory of Brownian motion).
In the K-system in a dielectric, nonmagnetic botijor a monochromatic field (time factor

e ") these equations are

.
VxFEi=1—-B;
‘o o 1)
V xBy=—-l—¢&g1(w)E1—1—F
C C
whereE and B are the electric and magnetic fields(w) is the complex dielectric constant
for body1, andF is the random field. According to Rytov the correlation function of the latter,
determining the average value of the product of componenfs af two different points in
space, is given by the formula

(1
(Fix,y. ) F(x', ¥, 2)) = 4h<§ + n(w)>8”(w)8ik5(x —x)8(y —¥)8(z =2 2
where
1
n(a)) = m

and whereT is the temperature and is the imaginary part of = ¢ +¢”. The function
F(x,y,z) can be represented in the form of a Fourier integral, which can be written for the
half-space; < 0 in the form

F(x,y,z) = / g(k)e?" cosk,z dk 3)

o0
where a two-dimensional vectay is parallel to the surfacek? = k. + ¢2, andr is the
radius vector in thecy-plane. For the Fourier componenjsgk), the correlation function
corresponding to the spatial correlation (3) is

_ G +n@)e()

(i (k, @)gi (K, @)) = —F——3——8y8(k — k), (4)
For bodyl (z < 0) the fieldskE and B can be written in the form [10]
By = / (a1 (k) Cosk.z + by (k) sink,z) €97 &% + / ui(@)@e™ % g 5)
+00
B = E/ {(lq x a4] + k.[e. x by]) cosk.z +i([g x ba] + k:[e; x a1]) sink.z} €7 d’k
W J oo
+ & / (la x wy] — sile, x wi) €975 g )
w J_o
wheree, is a unit vector in the direction of theaxis, and
02
S1= §81 —q? Q)

where the sign of the root is to be chosen such that the imaginary pawititbe positive.
The first terms in the expressions (5) and (6) represent a solution of the inhomogeneous
equations (1). Substituting them in the second equation of (1) and witimgthe form (3),
one can find the following relations, expressingandb; in terms of the Fourier components
g of the random field:

1 0)2
=772 2. x| 2 — . — k2 g
MZ (k2 — w2e1/c?) |:C2 €191 — q(q - 91) Zglzez} ®)
k
b1 = < [ez(q -g1) + qglz] . (9)

e1(k2 — w?e1/c?)
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The second integrals in equations (5), (6) represent the solution of the homogeneous
equations (1) (i.e. the equations wikhomitted), and describe the plane-wave field reflected
from the boundary of body. The condition for transversality of these waves is

up - q — syug; = 0. (10)

In the space between bodies (vacuum) 1, F = 0 and the field in thekK-system is
given by the general solution of the homogeneous equations, which can be written in the form

By = / 7 folg. )¢ + wig. 0re ) €7 g (11)
B;= = / 7 [ x o)+ ple. x oD@+ (g x w] — ple, x whe T g (12)
where -

p= 6;)_22 —q? (13)

andv andw satisfy the transversality conditions
v-q+pv,=0 w-q— pw, =0. (14)

The boundary conditions on the surfaces of the media are the requirement of continuity
of the tangential components & and B in the rest frame of the respective body. In the
K-system, on the plane= 0 for a given value o§ it is convenient to write the corresponding
equations for components of the fields along the veatprs: g/q ande,, = [e; x e4]; this
gives the following equations:

+00
/ aiq dkz tul =vg +twy
—00
+00
/ a1in dkz +Uuy, = v, tw,
poo (15)
/ (qalz - kzblq) dkz +qui; +s1u14 = Q(vz +w,) — P(Uq - wq)

o0

+00
/ _kzbln dkz +s51U1, = —P(Un - wn)

o0

whereay, = e4 + a1, a1, = e, - a; and so on. In what follow we shall need only the field
between two media. Using the transversality conditions (10) and (14) and the expressions (8)
and (9), from equations (15) we can obtain the following equations:

o 1
ps1 (qglz(Q» kz,(,()) _Slglq(q7 kz,(,())) 2 dkz
k2 —s
—00

z 1
= — (s1+ pe1)vg(g, ®) — (pe1 — s1)we(q, ®) (16)
2 [ gmlq. ke,
s 2 L'Zw) dk; = (p +51)vn(q, ) + (51 — P)wn(q, ®). (17)
c o k2 —s7

In the K’-system the Maxwell equations have the same form (1) and in the second
medium (the half-space > d), the field E,, B, is given by the same formulae (5)—(9)
with the x-coordinate changed to/, the index 1 changed to 2, cbg, sink,z replaced by
cosk,(z —d), sink,(z — d) and a change in the sign ofthe ‘reflected’ waves now propagate
along the positive-direction). In the space between the media in KHesystem, the field is
given by the same formulae, equations (11)—(13), witthhanged to’, andv, w replaced by
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v, w’. The relations between the fields in tke and K’-systems are determined by Lorentz
transformation. Neglecting the terms of ord&t/c)?, these relations are given by

1%
v'(q, o) =v(q, w)+ ” [ex [k x v(q, )]] (18)
1% -
w'(q, @) = w(g o)+ —[e. [k x w(g, »)]] (19)

wherek = (q, p), k = (g, —p), @' =0 —q,V,q = g — (Vo/P)e,.
In the K’-system the boundary conditions at the surface of bda@y z = d give the
equations

(= ’ ’ / - / / 1
PSsy (C] gZz(q7k170))+sz q2q’(qvksz))ﬁ dkz
—00 —

z L)
= (pe; — sg)v;, (q, w)er? + (s; + peg)w’q, (q,w)e P (20)
/\2 poo ’ ’
n’ ) k ) - i - N\ a—i
Sy = / g2n 10 Z_zw—) dk; = (s, — plv,(d, w)erd + (s; + pw, (¢, )e '
¢ —o k2,
(21)

wheres, = e2(w — ¢, V), and

—q,V)?
53 = \/(w’/C)zsz(w’) —q%= w(az(a) —q:V) =1+ p2 (22)
c2

p is invariant under Lorentz transformation. Now from the equations (18), (19) with accuracy

to the terms of the first order ii/c we have
2

P / qyp°V
V(g o) = (v - eg) X v4(q, ) + L)qz Un(g, ®) (23)

/
w wq,V
v, =0 ey) X —uv, — EEl

22 Vg. (24)
Similar equations can be written fer,, w,,,. After substituting (23) and (24) into the equations
(16), (17) and (20), (21) we get a system of four equations. These equations can be solved
considering the second terms in the equations (23), (24) as a small perturbation. In zero order
we neglect the second terms. The zero-order solution has the form

o0
0 p Cinl, — o q81:(q, k;, w) — 51814(q, k;, ®)
”q=/ _{sle P(sz +ezp) : K2 — 52 q

- Z

o0
! /7k b / + 5 ! /7 k"’ /
b5 (ep — s LEETK w; 2 .k w)} dk. (25)
kz -9
o0
0 p ind , — - qglz(Qa kzaw)_slglq(Qa k;, w)
w) = ——51€P (e p—s
p [m A { 1 ( 2P 2) kzz_sf
7 /’k , / + —_ , /’k , /
—s2_(81P+S1)qg22(q - 0;3 S2_§2q @k 0))} dk, (26)
7 T 52

o0 / /
0 w ipd, — 8in(q, ko) gow (q', kz, )
v, = —ws1€ s, + ——— tws, (51 — e dk
" /_ooczAfi 187 (s +p) k2 — 52 2 61=p) k2 — 552 :

(27)
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g . n ’k7’ _ - /,k , /
w? =/ @ {a)sle'pd(sz —p)—gl (.5 @) —w'sy (s1+p)—g2 (g, k:, ) dk.

" oo C2A/ k2 —s2 k? — 552
(28)
v, = 1% w, = 1% (29)
P 14
where we have introduced the notation
A=e"(s1p —s51)(e; p —55) — € " (e1p +51) (5 p +55)
A =& (sy— p)(s; — p) — e P (p+s51)(p+s7).
The first-order solution has the form
— A +s51)A
ol (pe1 —s1) who (pe1+s1) (30)
q A g A
(s1—p)AN (p+s)A
L e ey v (31)
where
2
qyp \% B B . B -~ .
A== )qu [(pez —s2)vn€ + (pe; +53)wpe "]
,_wqyV o 04pd - 0—ipd
A = 2q [(s2 — PV’ +(s; + pw,e ]

3. Calculation of the force of friction

The frictional stresses and—o which act on the surfaces of the two bodies can be obtained
from thexz-component of the Maxwell stress tensgy, evaluated at = 0:

1 [

o=—
87 J_o

do [(E3. E3, + (E3, E3) + (B3 B3,) *+ (B3, Bax)]:—0. (32)

Here the(- - -) denote statistical averaging over the random field. The averaging is carried out

with the aid of equation (4). Note that the components of the randomgfiedddg, referring

to different media are statistically independent, so the average of their product is zero. Writing
the squares of the integrals (11), (12) in the usual way as double integrals, and carrying out
one integration over th&function, we obtain

1 2 * *
o= g/dwd q [(Es(q, 0)E3,(q, w)) +(E3,q, 0) E3 (g, w))

+ (B3;(q, w) B3,(q, ®) + (B3.(q, ®) B3, (q, w))].—0 (33)

where one must substitute, in place Bf and B3, the expressions in the integrands (11),
(12) determined by the formulae (25)—(31), and the average progitgt v)g; (k, »)) is to

be taken ag1/2 +n(w))e” (w)8;; /7. For a given value of it is convenient to express the
components, andB, in terms of the components along the two vectgyande,,:

By =(qx/q9)Bq — (qy/q) Bn.
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Thus we can write
1 X * *
0= / do d’q {% (E.(q. ©)E}(q. ) + (Elq, ©)Eq(q, ®))

+(B.(q, w) B, (g, ®)) + (B} (q, ®) B4(q, ®))]:=0

- "; (E.(q. 0)EL(q. ) + (EXq, ©) En(q, )

+(B.(q, w) B}, (q, ) + (B (q, w) Bn(q, w))]z=o}- (34)

According to equations (11), (12)
E; = (v +w.) = (q/p)(wg — vg) = (gp*/|p|*)(wq — vg)
E; =v4 +wy
E,=v,+tw,
B, = (cq/w)(vn + wy)
By = (cp/w)(wp — vn)
Bn = (wp*/C|P|2)(Uq - wq)'
After substituting these expressions into formula (34) one can see that the second term
is identically equal to zero. From equations (25)—(31) it follows that the zero- and first-order

solutions are statistically independent; then, neglecting the terms of @rtef, from (34),
(35) we obtain

1 [ 1 i}
= I ), dw/dzq %([W(pw )(Jwgl?) = (vgl?)

(39)

+(p — P (we* — vf;*w;’))]

2
+ (g) [(p + (w23 — (2P — (p — pPH(Iwd — v?,*wz))D
(36)

where we change the integration ovebetween the limits-oco and +oco to integration only
over positive values ab, which gives the extra factor two.

Taking into account thap = p* for ¢ < w/c andp = —p* for ¢ > w/c, and carrying
out the integration overid with the help of the formula

/"O dk, im
oo K2 =522 |s|2 (s — 5%)

we obtain, after substituting (25)—(31) into (36),

o[ 2
o =—" da)/ d“q q.
8773/(; g<w/c

(1— Ry, P (L — Ry, %)
|1—€?rdRy, R, |2

. i/m da)/ Py goe 20l
273 0 qg>w/c

Im Ry, IM Ry,
11— e 2rPdRy, R, 2

(n(w — g V) —n(w)) +[R, — Rs]}

(n(® =g, V) —n(@)) +[R, — Rs]} (37)
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where
&ip —Si & —Si
Ry, =L Ris =
T eipts T et
i
T eiptst T s
sii(a)) = ¢(w £ ¢q,V) and sii(a)) = si(w £ ¢,V), i = 1,2. Note thatR;, and R;,

are the electromagnetic reflection factors for p-polarized and s-polarized light, respectively.
(p-polarized light has the electric field vector in the plane of incidence while the electric
field vector is perpendicular to this plane for s-polarized light.) The first term in (37) is the
contribution to the friction force from the propagating (radiating) electromagnetic field, i.e.,
the black-body radiation. This term includes only the thermal radiation and is equal to zero at
T = 0. The second term is derived from the evanescent field, i.e., from the component of the
electromagnetic field which decays exponentially with the distance away from the surfaces of
the bodies. This term does not vanish evefi at 0 K because of quantum fluctuations in the
charge density in the solids.

4. Some limiting cases

Let us first consider distances« c/w,, wherew, is the plasma frequency of the metals. For
typical metals¢/w, ~ 200 A. In this case the main contribution comes frgny> wp/c, and
we haves; ~ s, ~ p ~ig, Ry ~ 0 and

e—1

NI

In this approximation the integration ougcan be extended to the whajeplane. Using these
approximations, the second term in (11) can be written as

h 0o Im Ry, Im R,
o = F/ da)/dzq qxe_z”"d{< _z‘lp‘d 2”7 s+t(le 2))
73 J [1— e 2PRy, Ry |

x (n(®—qxV) —n() +[R, — Rs]}

E o0 o0 o0
=53 / dg, / dg, g.e % { / do [n(0) — n(w +gxv)]
T J 00 0 0

5 < Im R7, Im Ry,
|1— e 2rldR} Ry, |

p

2+(1<—>2))

4xV

_ dw [n(w) + 1/2]( m Ry, Im Ray +(1 < 2)) (38)
0 |1—e—2‘ldR1’pR2p|2

where we have used the relatio~w) = —n(w) — 1. At zero temperature the Bose—Einstein

factorn(w) = 0, and only the second term in (38) will contribute to the sliding friction; in

this limit our expression for the friction force for two identical solids is in agreement with

that of Pendry. In appendix A we show that the zero-temperature result can be generalized to

include nonlocal optics effects, by replacing the reflection faktidew) in (38) by the surface

response functiog(q, ). Next, let us consider the limiting case of low sliding velocity or

high temperature, namely, <« cd/dw, wheredy = ch/kgT is the Wien length (typically

dy ~ 10° A). In this case

dn giolksT g v
do ~ (eho/ksT —1)2 kpT

n(@) —n(w+qV)~ —q.V
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and in the second term in (38) we can put
n(w) ~ kpT /ho.
Substituting these results in (38) gives

o= h_V/OO dg q°e21 /OO do (= 31| 1M Ry, IM Rz,
22 0 0 dw |1—e*2‘1dR1,,R2p|2

2 o o @V dw Im Ry, Im R,
+ —kgT [ dg, | dg, Xe—szd/ — L L. 39
7-[3 ? /;00 b -/O 74 0 w |1 - eizqdR1pR2p|2 ( )

The second term in this expression is proportionaltoasV — 0 (see below) and can
be neglected in the limit of smaW. The first term is~V and is in agreement with the
result obtained by Persson and Zhang if one assumes local optics (which implies making the
replacemeng(q, w) — R,(w)in[2]). Forfree-electron-like metals the local optics is accurate
if d > I, wherel is the electron mean free path in the metal. If this condition is not satisfied,
the general formula of Persson and Zhang must be used.
Let us consider two identical metals described by the dielectric function
w2
ew)y=1— ——L— (40)
w(w+1/1)

wherer is the relaxation time and, the plasma frequency. Thus, for small frequencies

2w
ImR, ~ a)—ﬁr ReRr, ~ 1
and if we neglect the imaginary part &, in the denominator of the integrand in (13) we

obtain

azg(liﬂ—TYLE_Vﬁ—”liBT LR (41)
ho,) (w,1)? d* 45hw, (0,7)? w,d°
where
1 [ dx x?

gzéfo ex_1,w0.5986

In deriving (41) we have used the following standard integrals:
* dxx 72 © dxx® 7t
b -1 6 o, e—1 15

The ratio between the second and first term in (41) equé¥s/c) (dw /d), and in deriving (41)
we have assumed that this quantity is much smaller than unity. As an example, if0 A
andV = 1 m s! then for typical metals at room temperatukg T ~ 0.025 eV,w,t ~ 100,
hw, ~ 10 eV) the first and the second terms in (41) give~ 108 and~10"1* N m~2,
respectively.

On the other hand, ifV /c)(dw/d) > 1 we get

ksT\> 1 RV 1 AV V2
o= (ks — 4y — (= (42)
2\hw, ) (w,7)? d* (wp71)? d* \dw,
where
5 [ dxx*
¢ 0024610

=297T2 0 e —1

The ratio of the second and first terms in (42) equalsl(V/c)?(dw/d)?. Itis clear that at
low temperature or high velocities, the second term in (42) will dominate.
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Next, let us consider the sliding friction to linear order in the sliding velocity when
c/w, < d < dw. There will be two contributions associated wily andR,. As shown in
appendix B, the contribution from, is

o B (i) T (1Y) @
The contributions; from the term involvingR; is given by (see appendix B)
V ho,

c d%dy

whereC ~ 0.394. Comparing (43) with (44) we obtain

(44)

o5 ~ Cwpt—

0y/0p & (w,T)2(hw,/ kpT)?.

For typical metals at room temperatukbey,/ kzT ~ 10° andw,t ~ 100, soo, /o, ~ 10,
i.e., the main contribution comes from the term involviRg As an illustration, il = 10* A
andV = 1 m s! then for metals at room temperature, characterized by the same parameter
values as were used above, oneaget: 108 N m—2,

Now, let us consider the radiative contribution to the friction force, which is given by the
first term in (38). In linear order in the sliding velocity we get

A (1= R, DA — Ry ( dn(w)
rad = ——= d d?q ¢? i P2 - +[R R} .
Orad 873 /0 CL)\/qu/C q 4y { 11— ezldelpR2p|2 9w [ P ]

(45)

For separationg/ much smaller than the Wien wavelengfy = ch/kzT we can put
expipd) ~ 1. In this case and for the small frequencies, whert k3T /h <« 1/7, we
get for identical metals described by the dielectric function (40)

_ 252 * )2 #*\2 *
A—-1IR,19 _}_,_(ss) + (es*) N1+s +‘9~1<1+wf> 1

—+ - xZ ~ = 4
. (46)

1-R22 2 des2 2 e 2 2
and the same result is obtained whepin (46) is replaced byR,. The final result for the
radiative friction force has the form

Orad = / do o’n(w) = il —hV kB (47)
JT2 4 120

Note that the radiative stress does not depend on the separation and is proportidnaitie
latter result is, of course, only valid as long @ss small compared with the lateral extent
(or linear size)L of the bodies. Wher becomes comparable with or larger thanthe
friction force between the two bodies will decrease monotonically with increasiAg room
temperature and at the sliding velocity= 1 m s™* one gets,,; ~ 1071®* N m~2. The ratio
of this contribution tas, from (44) is

- d \’kyT 1 d\?

Trad _ 0.1 B~ ~10°

oy dW hw, w,t dW

Thus ford ~ dy (which is of order~10° for typical metals at room temperature) the
nonradiative part dominates over the radiative contribution by a faetdf. However, for

large enough distances the radiative part dominates as this contribution is finite for arbitrary
separationgd.
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5. Summary and conclusions

We have calculated the friction force between two arbitrary bodies with flat surfaces separated
by a vacuum slab of thicknegs and moving with a relative velocity. The separatiod is
assumed to be so large that the only interaction between the bodies is via the electromagnetic
field associated witthermal or quantumfluctuations in the solids. A general formula for

the friction force has been obtained, which is valid for arbitrary velo®ityseparatiord

and temperaturd’, and applicable to any bodies. At low sliding velocity only thermal
fluctuations give a contribution to the friction force, linearly proportional to the veldgity
Quantum fluctuations give a nonlinear {ir) contribution to the friction force which is usually
negligible compared with the thermal contribution. (There is also a contribution from quantum
fluctuations which is proportional t&, resulting from electron—photon processes of higher
order than those considered in our work. However, this contribution decays as2ex)
(whereG = 27/a is the smallest reciprocal-lattice vector) and is negligibly small already
ford = 10 A; see [2,11].) We have studied the detailed distance dependence of the friction
force from short distances, where retardation effects can be neglected, to large distances where
retardation effects and black-body radiation are important. In most practical cases, involving
sliding of a block on a substrate, the van der Waals friction makes a negligible contribution to
the friction force (the main part of the friction arises from the regions of real contact between
the solids). However, in some special cases the van der Waals friction is very important [2]. For
example, quantum fluctuations contribute in an important manner to the friction force acting
on thin physisorbed layers of atoms sliding on metallic surfaces [12]. (In this case there is
an overlap of the wavefunctions of the sliding layer and those of the metal, which results in a
second contribution to the friction force, derived from the repulsive ‘contact interaction’ (Pauli
repulsion) between the sliding layer and the substrate.) In addition, the contribution from
thermal fluctuations gives the dominating drag force in some experiments involving parallel
2D electron systems [13].
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Appendix A

In this appendix we derive an expression for the (nonlinear) sliding friction using a nonlocal
optics description of the metals. For simplicity, we focus on zero temperatuee, 0 K,

and assume that is so short that retardation effects can be neglected (only in this ‘short-
distance’ regime will nonlocal effects be important). The calculation is based on the formalism
developed in [2,14]. Let us first define the linear response fungtighw) which is needed
below. Assume that a semi-infinite metal occupies the half-spac@. A charge distribution

in the half-space > d gives rise to an (external) potential which must satisfy the Laplace
equation forz < d and which therefore can be written as a sum of evanescent plane waves of
the form

¢ext = ¢Oeqzeiq~a:7iwt
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whereq = (qx, ¢,) is a 2D wavevector. This potential will induce a charge distribution in the
solid (occupying < 0) which in turn gives rise to an electric potential which must satisfy the
Laplace equation far > 0, and which therefore can be expanded into evanescent plane waves
which decay with increasing > 0. Thus the total potential for & z < d can be expanded

in functions of the form

Poxt = Po(e7° — ge*qz)eiq-w—iwr

where the reflection facto§ = g(¢, w). For the present purposes, we can treat the low-
energy electron—hole pair excitations in the metals as bosons. As shown in reference [14], the
Hamiltonian for the total system can be written as

H = Tgubbaon + Y hgu,bpe,bqa, + heob™b
qu1 qaz
+ Y Cuay € 4 (bga, €7 VD +h.C). (A1)
qain

Herewg.,, b,,, andb,,, are the angular frequency and creation and annihilation operators for
the bosons (of solidl) with the quantum numberg, «1), andC,,, are parameters determining
the coupling between the boson excitations in sahith the electrons in soli@. Similarly,
b;az andb,,, are creation and annihilation operators for bosons in shlahd(z,, z,) is the
position operator of electranin solid 2, which in principle could be expressed in terms of the
operatorsb;w2 andbg,,, but for the present purpose this is not necessary. As shown in [14],
Cqo, Can be related to Iy (¢, w) via
2¢%h
D 1Cqu P80 — wyay) = g Mea ). (A2)
ay
We can write the Hamiltonian of the interaction between sdlidad?2 as

H = Z(Vqé‘f‘” +h.c).

q

Using time-dependent perturbation theory (wih as the perturbation) we can calculate the
energy transfer from the translational motion (kinetic energy) to internal excitations in the
solids (boson excitations,,, andw,,, in solids1 and2, respectively):

21 _
P =" hwgd(0g — 0gu, — Ogoy)|Cya
qaiaz
2

x €2 (o, = 1Linge, =1y e 1G~Derap! 10,0) (A3)
wherew, = |g - V'|. To simplify (A3), let us write
8(wg — Wgay — Dga,) = / do' 8(0 — Wge,)8(Wg — & — Wga,)- (A4)
Substituting (A4) in (A3) and using (A2) gives
47 ? Wq , , ,
P = N Xq:j’e qu/da) Im g1(q, 0" )My (wy — @) (A5)

where
2

My(@) = 80 — 0gay)|{ge, = 1 Y_ €G- Derlare|)
@2 n
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But it has been shown elsewhere that [15]

q
Im g2(q, w) = E 3@ — wya,)

2,2 qaz
2mce -

2
(nqaz =1 Z e 4@ —d) g-ig-z, |0)
n

so we have that
Ahq

M) = 555 1M g2(q, @) (A6)
Substituting this result in (A5) gives
2h
p ‘Z‘fd/d/l L) IM g2(g. wg — ). A7
- ;wqe W' 1M gi1(q, @) IM g2(q, wg — @) (AT)

Finally, making the replacement
A 2
2= g2 | P
q
and using the relatio® = o AV between the poweP and the shear stressgives

1 lg. |V /
o =53 / d*q g le~* f do’ IM g1(q, @) 1M ga(g, 14,1V — &) (A8)
0

where we have used that Igiig, @) = 0 forw < 0. The couplingd’ gives rise not only to real
excitations but also to screening (image charge effects). To take these into account one must
go to higher order in perturbation theory. Following reference [2] this gives a modification of
(A8):

_ h 2 |Qx|e_2qd

“ 208 ) T T giq. 0)g2(q. O 2P

lgxIV
. / do’ Im g1(g. ) IM g2(q. 14|V — )
0

(A9)

where we have assumed that the small frequencies involved in the real excitations are screened
in an adiabatic manner so that andg, can be evaluated at zero frequency in the screening
factor. In the case of local optics, this expressiondoagrees with the last term in (38)
evaluated at zero temperature. At finite temperatiire- (0 K) an extra factor of [1 + 2(w")]

must be inserted in the frequency integral in (A9) to take into account the enhanced probability
for excitation of bosons at finite temperature. Hor> 0 K one must, in addition to the
process considered above, also include scattering processes where a thermally excited boson
is annihilated either in solid or in solid 2, namely (n4o, = 0,14, = 1) — (1,0) and

(1,0) — (0, 1). These processes were considered in reference [2] and give, in the local optics
case, the frictional stress corresponding to the first term in (38).

Appendix B

In this appendix we calculate the sliding friction to linear order in the sliding velocity when
c/w, < d < dy (Wheredy = ch/kgT). In this case the main contributiencomes from

the first term in (39) to which we must add a similar term involviRg In this integral we
replace the integration variabjewith p = 2dq. The integral ovep is divided into two parts:

the integral oveK0, pg) and that oveK pg, 00), wherepg ~ dkgT /ch <« 1. In the integral
over (pg, o) and forw > wo, where

¢ \?1
won~ [ —) =
° wpd) T
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we can put
2 (2wd 12
mR, ~ —_(i)( © ) (B1)
p\ ¢ 205t
_ 1/2
ImR; ~ — Zpe (i> . (B2)
wpd \ 0T

Let us first consider the contributien, to (39) from terms involvingR,. We then obtain
hv (1 4/ 45 d 1 /OO o 20d\%( dn
o, =—| = — w —_— -
P w2\ 24 7o P a5 dp\ e —1) ), 2037\ ¢ dow
1

p
3 hv *° .
~ + d_ e_P
872 d4< /1 b )

<kBTd) kBT 1 ® dx XZ
X

Te ) Fwy oy by &1
3¢ hv (kgTd\2ksT 1 1 dy

~ S5 hv (kg B 1+=+In=2 (B3)
72d*\ fic ) ho, w,T e d

whereé = 0.5986 (see section 3). The integral ove<0p < pg can be shown to give a
negligible contribution to the linear (in the sliding velocity) friction force. This follows from
the following equation:

d (ImRr,)?  d (mR,)*  d ((m(s/e))? ~0
do [1— e 7R,R,2  dw|1—R,R,2 do\ [s/c2 )

where we have used that (sy¢)/|s /€| is approximately independent of frequency. Next, let
us consider the contributian to (39) from the term involvingr,. We get

5 hv h c / dp p* /‘o" dx d 1
o'S%——— —_— _ | ——
1672 d* kgTt \ w,d o -1/, x do\ e -1

hv (kgTt\ [ wpd 2
—c— (28 e
d*\ & c

where
00 = =4
= 325712[) :ﬁp—_pl —0.394
— T 2
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